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Abstract We discuss a model for the autocatalytic reac-
tion A + B → 2A on substrates where the reactants perform
a compact exploration of the space, i.e., on lattices whose
spectral dimension d̃ is < 2. For finite systems, the total
time τ for the reaction to end scales according to two differ-
ent regimes, for high and low concentrations of reactants. The
functional dependence of τ on the volume of the substrate
and the concentration of reactants is discussed within a mean-
field approximation. Possible applications are discussed.

1 Introduction

Diffusion-reaction processes are a long standing problem
which finds a number of applications, especially in phys-
ics [1], chemistry and biology [2].

Most of the earlier studies focus the attention on a sin-
gle particle diffusing in the presence of immobile reactants,
while much less is known about the statistical properties asso-
ciated with the diffusion of a set of particles, notwithstanding
its interest. Indeed, multiparticle diffusion problems are diffi-
cult to manage due to the fact that the effects of each single
particle do not combine linearly, even in the noninteracting
case [3]. In the last years much effort has been devoted to the
formulation of rigorous many-body treatments of diffusion-
controlled reactions especially in low dimensions. In fact,
while in high dimensions a mean-field approach provides a
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good description, in low dimensions local fluctuations are
responsible for significant deviation from mean-field predic-
tions [4].

In general, a great deal of recent experimental as well as
theoretical work has been devoted to the study of such diffu-
sion-reaction processes in restricted geometries. The latter
expression refers to two different (possibly concurrent) situ-
ations: that of a low dimensionality and that of a small spatial
scale. In the first case, the spectral dimension d̃ characteriz-
ing the diffusive behavior of the reactants on the substrate is
low (1 < d̃ < 2), and the substrate underlying the diffusion-
reaction lacks spatial homogeneity. Hence, there are consid-
ered media whose properties are not translationally invariant
and where the reactants perform a “compact exploration” of
the space [5]. These kinds of structures can lead to a chem-
ical behavior significantly different from those occurring on
substrates displaying an homogeneous spatial arrangement.
This is the case, for example, of fractal lattices: in the last
20 years, an extensive literature has been investigating the
consequences of a fractal geometry on the laws of reaction
kinetics [6], for example for the one-species (A+ A → ∅)[7]
and two-species (A + B → ∅)[7–9] annihilation reactions.
In all these systems the role of the generally noninteger spec-
tral dimension, whose definition will be discussed below, is
stressed, as opposed to the integer Euclidean dimension char-
acterizing homogeneous structures.

But restricted geometry also refers to a variety of exper-
imental situations in which these processes occur on spatial
scales too small to allow an infinite volume treatment. The
so-called finite-size corrections to the asymptotic (infinite-
volume) behavior in this case become predominant. Indeed,
previous works considered infinite systems (both euclidean
and fractal), and studied their properties in some kind of
thermodynamic limit; typically, sending the volume to infin-
ity while keeping the density of reactants fixed. Therefore,
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they considered the critical properties of the systems (for
example, the scaling of the density of reactants) for t → ∞,
hence, for an infinite time lapse of the reaction. One of the
most important issues of this paper concerns the finite size of
the systems under study. In this work we explicitly examine
finite systems where no thermodynamic limit has to be taken.
All the quantities we calculate, in particular the total reaction
time τ , are hence finite, and we seek their dependence on the
finite parameters of the system (volume of the reaction and
concentration of the reactants).

In particular, in this paper we study the dynamics of a sys-
tem made up of two species particles undergoing irreversible
quadratic autocatalytic reactions according to the following
scheme: A + B → 2A, with reaction probability set equal
to one. All particles move randomly and particles of differ-
ent kinds react on encounter, i.e., the reaction is strictly local
and deterministic. Autocatalytic reactions have been exten-
sively analyzed on Euclidean structures, both analytically
and numerically [10–15]. A continuous picture of this sys-
tem can be attained by the Fisher equation [16,17] which
describes the system in terms of front propagation; however,
this picture will not intervene in our calculations, that will
mostly concern the low-density regime, where a front prop-
agation cannot be defined.

While previous works on autocatalytic reactions consid-
ered reactions on Euclidean lattices, here we focus, as men-
tioned above, on low-dimensional structures (1 < d̃ < 2),
hence considering media whose properties are not transl-
ationally invariant. Our investigations are especially con-
cerned with the role of topology in the temporal evolution
of the system. In particular, we will consider the concen-
tration ρA(t) of A particles present in the system at time t
and its fluctuations. From ρA(t) it is also possible to derive
an estimate for the reaction velocity. Furthermore, we con-
sider the average time τ at which the system achieves its
inert state, i.e., NA = N . We call this time “Final Time”. As
we will show, τ depends on the number of particles N and
on the volume V of the underlying structure, meant as the
total number of sites. More precisely, it will be shown, both
numerically and analytically, that for small concentrations
of the reactants the “Final Time” factorizes into two terms
depending on N and V , respectively. This result agrees with
previous works where the model under study was analyzed
for Euclidean lattices [18,19]. We will also show how this
dependence could provide a practical tool for the determina-
tion of the concentration of reactants, especially when very
small concentrations have to be detected [20].

The plan of the paper is the following. In Sect. 2 we
introduce the model, recall previous results on Euclidean sub-
strates (Sect. 2.1) and discuss the main features of inhomo-
geneous lattices (Sect. 2.2). In Sect. 3 we show our analytical
results concerning those lattices; Sect. 4 discusses the results
of numerical simulations. Section 5 contains our conclusions.

2 The model

We consider a system made up of N particles of two different
chemical species A and B, diffusing and reacting on a dis-
crete substrate with no excluded volume effects. The volume
of the substrate is V ; at time t , NA(t) and NB(t) are the num-
ber of A and B particles, respectively, with N = NA + NB .
We define ρA(t) = NA(t)/V and ρB(t) = NB(t)/V as the
concentrations of the two species at time t .

Different species particles residing at time step t , on the
same node or on nearest-neighbor nodes react according to
the following mechanism:

A + B → 2A

with reaction probability set equal to one, so that the pro-
cess is strictly diffusion controlled. Notice that the previous
scheme is quite general as it also includes possible additional
products (other than 2A) made up of some inert species of
no consequences to the overall kinetics.

The initial condition at time t = 0 is NA(0) = 1, NB(0) =
N −1, with all particles distributed randomly throughout the
substrate. As a consequence of the chemical reaction defined
above, NA(t) is a monotonic function of t and, due to the
finiteness of the system, it finally reaches value N ; at that
stage the system is chemically inert. The average time at
which NA(t) = N is called “Final Time” and is denoted
by τ .

The Final Time τ is of great experimental importance since
it provides an estimate of the time when reaction-induced
effects (such as side-reactions or photoemission) vanish [21].

In this perspective, deviations from the theoretical pre-
diction of τ are, as well, noteworthy: they could reveal the
existence of competitive reactions [22] or explain how the
process is affected by external radiation [23].

However, one of the most interesting applications of the
Final Time is analytic [20,24]: as we will show, τ sensitively
depends on N , that is on the initial amount of reactant. Hence,
given a trace reactant, its determination can be achieved by
means of spectrophotometric measures of τ .

Indeed, our results confirm that this technique can be
extremely sensitive [20,25] and the determination of ultra-
trace amounts is therefore possible.

We stress again that the following analysis mainly focuses
on high-diluted finite-size systems. The experimental appli-
cations previously described concern finite systems; further-
more, we aim to evidence the role of the substrate topology
which just emerges in the diffusion-limited regime.

2.1 Euclidean substrate

The quadratic autocatalytic system for diffusing reactants
on Euclidean lattices has been analyzed in detail in earlier
works [18,19] in the context of information spreading. It
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also provides a simple model for epidemic systems: A (B)
particles stand for (irreversibly) sick (healthy) or informed
(unaware) individuals, respectively. For these systems a
knowledge of the rate of infection or information diffusion is
of great importance. We briefly review the results obtained
in [18,19] for τ on Euclidean lattices.

In general, τ depends on system parameters N and L and,
in the low-concentration regime, and for the Euclidean lat-
tices this dependence can be factorized into two contributions
depending on N and L , respectively, and whose functional
form depends on the dimension of the lattice. A mean-field
calculation for τ provides exact results for d > 2 and d = 1,
while dimension d = 2 is marginal. Our previous results can
be summarized as follows:

τ(N , L) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C1
L2

N
d = 1

f2(N ) L2 ln(L) d = 2

Cd
γ + ln(N )

N
Ld d ≥ 3,

(1)

where Cd are dimension-depending constants and fitting pro-
cedures suggest f2(N ) = A+ln(N )

N (for further details see
[19]).

2.2 Inhomogeneous structures

A number of problems in physics and chemistry are related
to random walks on homogeneous structures. In the last few
years there is a growing interest in the theory of diffusion in
low and fractal dimensions [26]. In fact, most of the materials
existing in nature show a disordered, non-crystalline geomet-
rical structure. Indeed, fractals are good models for disor-
dered systems since they usually display a dilation symmetry
which is a fractal characteristic. Apart from the applications
point of view, low-dimensional systems are of great theoret-
ical importance. As previously underlined, when diffusion is
considered, low-dimensional structures dramatically affect
the kinetic laws.

Fractals are self-similar structures exhibiting dilation sym-
metry. Differently from Euclidean structures, their descrip-
tion requires at least two (typically noninteger) different
dimensions. The first is the fractal dimension df , that gives
the dependence of the volume of the system (i.e., the number
of sites it contains) on its linear size

V (L) ∼ Ldf .

The second is the spectral dimension d̃ , which governs
(among other phenomena) the long-time properties of diffu-
sion on the lattice. Indeed, if we consider a random walkers
starting from a given site i of the lattice, the probability Pii (t)

of returning back to the starting point at time t , at large times,
follows the law

Pii (t) ∼ t−d̃/2.

Also, the number S(t) of different sites visited by the random
walker at time t is for large times:

S(t) ∼ t d̃/2 for d̃ ≤ 2
S(t) ∼ t for d̃ > 2

(2)

For d̃ < 2 the random walker returns to its starting site with
probability 1 and the lattice is called recurrent; for d̃ > 2
the probability of return is less than 1 and the lattice is called
transient (lattices with d̃ = 2 have to be discussed case by
case). For d̃ < 2 the walker is also said to perform a compact
exploration of the space [5], since the (fractal) dimension of
the random walk trajectory is greater than the dimension df

of the underlying lattice.
The spectral dimension is of a more general interest than

the fractal dimension, since it can also be defined for inho-
mogeneous structures that lack a dilation invariance, hence
for which a fractal dimension df cannot be defined.

The two fractals we consider in this paper, the Sierpinski
gasket and the T-fractal, have both d̃ < 2.

The Sierpinski gasket is generated by iterating in a recur-
rent fashion a generating cell consisting of a triangle (Fig. 1).
The number of iterations is called the generation g of the
fractal. The total number of triangles after g iterations is 3g ,
while the total number of sites (hereafter called volume V ) is
V = 3 3g+1

2 . The linear size of the gasket is given by 2g . The

Fig. 1 Sierpinski gasket of generation 4: V = 3
2 (33 − 1)
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Fig. 2 T-fractal of generation 4: V = 34 + 1

Fig. 3 Comb lattice

Sierpinski gasket has fractal dimension df = log 3
log 2 ≈ 1.584

and spectral dimension d̃ = log 9
log 5 ≈ 1.365.

The T-fractal is constructed from a 4-sites T-shaped gener-
ating cell (Fig. 2). It has fractal dimension df = log 3

log 2 ≈ 1.584

and spectral dimension d̃ = log 9
log 6 ≈ 1.226.

The third structure we consider, the comb lattice (Fig. 3),
does not present dilation invariance; hence, the df cannot
be defined. As we said above, it is still possible to define a
spectral dimension that turns out to be d̃ = 3/2.

Some linear problems have already been solved exactly on
these structures using renormalization groups technique (see
for example [27]). However, for many interacting diffusing

particles an exact solution is not feasible and we rely mainly
on numerical simulations.

3 Analytical results

In this section we study the irreversible autocatalytic reac-
tion occurring in a close system by means of a mean field
approximation. This kind of approach is very different from
those previously adopted for this kind of system.

An analytical result for the dependence of the Final Time
τ on V and N is difficult to find: approximate calculations
can be carried out in the two limit regimes of high and low
concentration.

For high concentrations (ρ � 1) the results found in
Euclidean structures [18] continue to hold for inhomoge-
neous geometries: the A particles occupy a connected region
of the space for all t . The border of this region expands at a
fixed velocity, such that at time t the region covers all the sites
whose chemical distance from the starting point of the seed
particle is ≤ 2 t . Hence, for a finite system like those we are
considering here, the Final Time is τ = lmax/2, where lmax is
the chemical distance of the most distant point on the lattice,
starting from the seed particle. On Euclidean geometries this
yields τ = L/2 for d = 1 and τ = L for d ≥ 2. On the other
hand, on inhomogeneous structures the dependence on L is
not so simple, since it involves taking the average with respect
to all possible starting points for the seed particle; anyway,
the crossover between this high-concentration regime and the
low-concentration one remains apparent.

Our mean-field approach is based on a different point of
view and the assumptions introduced make it valid just in
the low-concentration regime. In this approach we focus on
collective quantities lacking the spatial dependence.

In particular our hypothesis is that the time elapsing
between a reaction and the successive one is long enough
that the spatial distribution of reactants can be considered
as uniform. This assumption corresponds to a mean field
approach since we neglect correlations between spatial posi-
tion of reactants; in other words we neglect the fact that for
small times after a reaction the two A particles are likely to
be found nearby. This kind of hypothesis is therefore valid
for small concentration of reactants, i.e., ρ 	 1. As a con-
sequence of this hypothesis we can just focus on two-body
interactions among particles since the event of three or more
reactants interacting together is unlikely at small densities.

First of all we consider the final time τ . Let us define 〈tn〉
the time elapsing between the (n−1)th first encounter among
different particles and the nth one. This time corresponds
to the average time during which there are just NA(t) = n
particles in the systems. In the mean field approximation
this is proportional to the trapping time in the presence of n
traps randomly distributed through a volume V . For compact
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exploration of the space (d̃ < 2) [5], the average trapping
time ttrap for a random walker in a distribution of N − NA

randomly distributed moving traps is given by [28]

ttrap ∼ ρ
−2/d̃
trap =

(
V

NA(t)

)2/d̃

,

since the density of traps is ρtraps = NA(t)/V . Here, the
symbol ∼ denotes proportionality.

This is the trapping time for one particle in a background
of moving traps; we are interested in the average trapping
time of the first out of N − NA particles, that for rare events
is just the same time rescaled by a factor N −NA (the number
of B particles):

〈tn〉 = V 2/d̃ N−2/d̃
A

N − NA
. (3)

The time τ can therefore be written as

τ =
N−1∑

NA=1

〈tNA 〉. (4)

For this sum there exists no closed form; however, in the
limit N → ∞ we can adopt a continuous approximation and
replace the sum with an integral. We then find

τ ∼V 2/d̃

[
d̃

(2 − d̃)N
+ N−2/d̃(log N + H2/d̃)+ O(N−1)

]

,

(5)

where Hm is the harmonic number

Hm =
m∑

k=1

1

k
.

In particular, the leading-order contribution for a one-
dimensional system (d̃ = d = 1) is

τ ∼ V 2

N
(6)

and for a two-dimensional lattice (d̃ = d = 2)

τ ∼ V
log N + γ

N
(7)

where γ is the Euler–Mascheroni constant. For 1 < d̃ < 2,
the expression in (5) interpolates between (6) and (7).

The mean-field extension just performed also allows to
derive some insights into the temporal behavior displayed by
NA(t). In fact, being τn the average time at which NA = n,
from Eq. 4 we can write
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Fig. 4 Normalized number of A particles NA(t)/N vs time t for a sys-
tem made up of N = 128 particles embedded on different structures,
as shown by the legend. The best fit for the cubic lattice is also shown
and it is given by a pure sigmoidal

τn =
n−1∑

NA=1

〈tNA 〉 = f (n). (8)

Now, we estimate NA(t) as

NA(t) = f −1(t)

whose numerical solution provides an S-shaped curve to be
compared (see Fig. 4) with the sigmoidal curve obtained from
a standard mean-field approximation [18]

NA(t) = N

(N − 1)e−N pt + 1
, (9)

where p is a quantity proportional to the concentration ρ that
in practice must be adjusted within the fitting procedure.

4 Simulations

In this section we show the results obtained with numeri-
cal simulations performed on the Sierpinski gasket, on the T
graph and on comb structures.

First of all we consider the dependence on t displayed
by NA(t). In Figs. 4 and 5 we show data obtained for the
Sierpinski gasket. In particular, in the latter figure we also
provide a comparison with results obtained for the T-graph,
the comb lattice, the square lattice and the cubic lattice.
Consistently with results found in [18], for transient lattices
NA(t) is well fitted by the sigmoidal function of Eq. 9, while
for low-dimensional structures deviations are expected.
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Fig. 5 Data depicted refers to
a system of N = 128 particles
diffusing on a Sierpinski gasket
of five different generations.
Each generations is depicted in
different colors, as shown by the
legend. Left Number of A
particles NA(t) present in the
system vs time t . Right
Fluctuations
σ(t) =

√

〈N 2
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In Fig.4 we show the time evolution NA(t) for substrates
with the same total number of particles N and with (approx-
imately) the same volume V , but different spectral dimen-
sion d̃ . In order of decreasing d̃ , they are: the cubic lattice
(d̃ = d = 3), the square lattice (d̃ = d = 2), the comb
graph (d̃ = 3/2), the Sierpinski gasket fractal (d̃ = log 9

log 5 ≈
1.365) and the T-fractal (d̃ = log 9

log 6 ≈ 1.226). We remind
that the spectral dimension describes the long-range connec-
tivity structure of the substrate and the long-time diffusive
behavior of a random walker on the substrate. In particular,
from Eq. 2, we expect that for substrates d̃ ≤ 2 the num-
ber of different sites visited by each walker will grow faster
as d̃ increases, and so will the number of meetings between
walkers. Hence, we expect the curves NA(t) to grow faster,
and saturate earlier, with increasing d̃ (N and V being fixed).
This is precisely what happens, as shown in Fig. 4 (except for
the saturation time τ of the comb lattice, which will be dis-
cussed below). For d̃ ≥ 2 (e.g., d̃ = 3 in the figure), NA(t) is
independent of d̃ and is fitted by a pure sigmoidal function.

From NA(t) one can derive the rate of reaction

v(t) = ∂t NA(t). (10)

As you can see from the numerical results in Fig. 6, in agree-
ment with the theoretical one, v(t) is an asymmetrical curve
exhibiting a maximum at a time denoted by tv . This time
obviously corresponds to a flex in NA(t) which scales with
the volume of the structure according to the following:

tv ∼ V 2/d̃ .

This is the same dependence shown by τ (see below), and
corresponds to a situation in which the population of the two
species are about the same (NA = NB = N/2). Analogous
results can be obtained for the T-fractal.

Furthermore, the profile shown in Fig. 6 also suggests that
the efficiency of the autocatalytic reaction is not constant in
time but, provided the number N of particles is conserved,
it exhibits a maximum when the number of B particles is
about N/2.

A similar result may be derived for the variance σA(t) of
the number of A particles present on the substrate.
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Fig. 6 Reaction velocity v(t) for a system of N = 128 particles
diffusing on a Sierpinski gasket; five different generations (depicted in
different colors) are shown. The reaction velocity is defined in Eq. 10

Interestingly, fluctuations display a maximum at a time tσ
which, again, depends on the system size with the same law
as τ . Notice that tσ > tv and NA(tv) = N

2 .

Finally, we consider the time τ representing the average
time at which the autocatalytic reaction stops since all B par-
ticles have been transformed into A particles. In general this
quantity depends on system parameters V and N = NA +
NB and, as we will show, its functional form is significantly
affected by the topology of the substrate.

The dependence of τ on the system size L (or the volume
V = Ldf ) clearly displays two different regimes, as shown
in Fig. 7. In both cases, τ increases with L , but in the high-
concentration regime the growth is less rapid; in particular
(as shown for d = 1 in the figure), it is proportional to L for
Euclidean lattices.

In the low-concentration regime, where we can assume
that reactions only occur among two particles, the mean-
field-like calculation explained in the previous section holds
and we expect τ to vary with N and V according to Eq. 5
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Fig. 7 Scaling of τ with the linear size of the system for a one-
dimensional chain (blue circles), a Sierpinski gasket (black triangles),
a T-fractal (red squares), and a comb lattice (green plus signs) on a dou-
ble-logarithmic scale. The number of reactants is fixed at N = 1024
for all systems. Dotted lines highlight the low-concentration regime
(L � 1), corresponding to a power law for all systems. For the one-
dimensional chain, the linear high-concentration regime (low L) is also
highlighted

which can be rewritten as:

τ V −2/d̃ = [ 1

N
+ N−2/d̃(log N − H 2

d̃
)]. (11)

Hence in Fig. 8 we plotted τ V −2/d̃ vs. N and we fitted data
according with the right-hand side of the previous equation.

It can be seen that for small densities all the data collapse.
Moreover, in that region, the fit coefficients introduced are
in good agreement with theoretical predictions.

It should be underlined that the average final time depends
non-trivially, on N and V , viz. τ does not depend directly on
the total concentration ρ, though the dependence on N and
V can be factorized.

The agreement of formula 11 for the comb lattice is less
good. In particular, it seems that the dependence of τ on
N and V can still be factorized, but that the exponent for
V is rather 8/3 than 2/d̃ = 4/3. This may mean that the
particular mean field approximation we have made does not

hold anymore for strongly inhomogeneous structures such as
combs; this point is still under investigation.

As explained in Sect. 2, experimental measures of τ are
useful in monitoring trace reactants. Indeed, our results show
that τ = fd̃(N )gd̃(V ) and therefore, once the substrate size
is fixed, the initial amount of reactant can be expressed as
N = f −1

d̃
( τ

gd̃ (V )
).

A proper estimate of the sensitivity of this method is pro-
vided by the derivative dN

dτ
: the smaller the derivative and the

larger the sensitivity. In Fig. 9 we depicted numerical results
for both N and its derivative dN

dτ
as a function of τ ; topo-

logically different substrates are also compared, all sharing,
approximately, the same volume. The numerical plots pro-
vided allows a qualitative analysis and comparison among the
different structures considered; a more quantitative inspec-
tion can be outlined after a proper calibration procedure.

First of all, notice that the characteristic curves are well
defined and they allow a univocal determination of N from τ .
Moreover, the sensitivity of this analytic technique is better
for small values of N (with N > 2) and, interestingly, for
low-dimensional substrates. Indeed, once V is fixed, when
d ≤ 2, the technique sensitivity is improved by lowering
the substrate dimension. On the other hand, when d > 2,
the resulting curves are overlapped, hence no improvement
is achieved. It should be underlined that the high sensitiv-
ity attained just for small concentrations of reactants makes
this analytic technique very suitable for the determination of
ultratrace amounts of reactants, which is of great experimen-
tal importance [29–31].

5 Conclusions

We have presented a model that considers the autocatalytic
reaction A + B → 2 A on non-Euclidean, low-dimensional
(d̃ < 2), finite-size substrates, characterized by a volume V
and a total number of reacting particles N .

We showed by analytical calculations that the Final Time
τ (the total time span of the reaction) displays two different
regimes, for high and low concentrations, with a different
dependence on V and N . In particular, the functional law for

Fig. 8 Rescaled Final Time

τ V −2/d̃ vs. number of particles
N for Sierpinski gasket (top)
and T-fractal (bottom). Different
symbols and colors distinguish
different generation as explained
by the legend. The line provides
the best fit in agreement with
Eq. 11
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Fig. 9 Log–log scale plot of the reactant amount N vs. Final Time τ ; as
shown in the legend, different substrate structures (with approximately
the same volume) have been compared. In the inset the derivative dN

dτ
is depicted again as a function of τ . Lines are guides for the eyes

low concentrations can be recovered by means of a mean-
field approximation. In fact, with respect to the standard one,
our mean-field approach is able to take into account the topo-
logical effect arising from a low-dimensional substrate.

Numerical simulations corroborated these results for frac-
tals, while simulations on strongly inhomogeneous lattices
(combs) hint at a quantitatively different behavior.

Theoretical results concerning the average Final Time find
important applications in analytical fields, where measures
of τ are exploited for detecting trace reactants. Our results
suggest that the sensitivity of such technique is affected not
only by the reactant concentration, but also by the topology
of the structure underlying diffusion. More precisely, a small
concentration of reactants implies a better sensitivity, hence
allowing the determination of ultra-trace reactants. More-
over, at the same concentration, and for low-dimensional
(d < 2) substrates, by reducing the dimension d the sen-
sitivity can be further improved.
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